Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.).

نویسندگان

  • Y L Qian
  • X Q Zhang
  • L F Wang
  • J Chen
  • B R Chen
  • G H Lv
  • Z C Wu
  • J Guo
  • J Wang
  • Y C Qi
  • T C Li
  • W Zhang
  • L Ruan
  • X L Zuo
چکیده

In order to understand the effect of grain moisture of inbred lines at the silking and physiological maturity stages on kernel dehydration rate, 59 maize inbred lines from six subgroups were selected. Grain moisture was measured and QTLs associated with kernel dehydration were mapped. A rapid dehydration evaluation and association analysis revealed eight inbred lines with faster dehydration rate, including Yuanwu 02, K36, Zhonger/O2, Lo1125, Han 49, Qi 319, Hua 160, and PH4CV. A single sequence repeat analysis using 85 pairs detected five QTLs with phenotypic variation contribution ≥10% in the permanent F2 generation populations Zheng 58 x S1776 and Chang 7-2 x K1131, which had LOD threshold values ≥ 3 in both 2013 and 2014. The chromosome region of qFkdr7b had not previously been reported and is preliminarily identified as a new major QTL. A false positive field verification of grain dehydration rate of 53 inbred lines indicated that the screening result of the rapid dehydration inbred lines by specific amplification with marker Phi114 was most similar to the field assessment result, followed by markers Phi127 and Phi029. The rapid dehydration lines selected based on primer Phi114 amplification were also similar to the field dehydration rate and can thus be used for molecular marker-assisted selection. A significant effort is needed to improve stress resistance and shorten the growth period via fast kernel dehydration in intermediate materials of the inbred lines K36, Zhonger/ O2, Lo1125, Han 49, Hua 160, and PH4CV, and further using the selected lines for new combinations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

متن کامل

Detection of quantitative trait loci for ear row number in F2 populations of maize.

Ear row number (ERN) is not only a key trait involved in maize (Zea mays L.) evolution but is also an important component that is directly related to grain yield. In this study, quantitative trait loci (QTLs) for ERN were detected across two F2 populations that were derived from a same cross between B73 with 16 rows (N = 233) and SICAU1212 with four rows (N = 231). As a result, 33 QTLs were ass...

متن کامل

Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross.

Maize (Zea mays L.) is one of the most important food crops throughout the world, and provides oil and proteins to humans and livestock. Kernel oil and protein content in maize are two complex quantitative traits. In order to identify quantitative trait loci (QTL) controlling oil and protein concentration in maize kernels, and to evaluate their genetic effects, QTL analysis was conducted on an ...

متن کامل

Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes.

Kernel number per ear (KNE) is one of the most important yield-related agronomic traits in maize (Zea mays). To clarify its genetic basis, we made a quantitative trait locus (QTL) analysis of KNE in a recombinant inbred line population derived from lines Mo17 and Huangzao4, under two nitrogen (N) regimes. Seven QTLs, on chromosomes 4, 6 and 9, were mapped under the high N regime, which ex...

متن کامل

Genetic analysis of maize kernel thickness by quantitative trait locus identification.

Kernel thickness is one of the most important traits in kernel structure, and is related to yield. To ascertain its genetic information more clearly, an immortal recombinant inbred line segregation population was used to map the quantitative trait loci (QTLs) for kernel thickness. As a result, two QTLs were identified on chromosome 9; both of them had negative additive effects, and could decrea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2016